Muscarinic receptor activation modulates Ca2+ channels in rat intracardiac neurons via a PTX- and voltage-sensitive pathway.

نویسندگان

  • S W Jeong
  • R D Wurster
چکیده

With use of the whole cell patch-clamp technique, effects of the potent muscarinic agonist oxotremorine methiodide (oxo-M) on voltage-activated Ca2+ channel currents were investigated in acutely dissociated adult rat intracardiac neurons. In all tested neurons oxo-M reversibly inhibited the peak Ba2+ current. Inhibition of the peak Ba2+ current by oxo-M was associated with slowing of activation kinetics and was concentration dependent. The concentration of oxo-M necessary to produce a half-maximal inhibition of current and the maximal inhibition were 40.8 nM and 75.9%, respectively. Inhibitory effect of oxo-M was completely abolished by atropine. Among different muscarinic receptor antagonists, methoctramine (100 and 300 nM) significantly antagonized the current inhibition by oxo-M, with a negative logarithm of dissociation constant of 8.3 in adult rat intracardiac neurons. Internal dialysis of neurons with guanosine 5'-(thio)triphosphate (GTPgammaS, 0.5 mM) could mimic the muscarinic inhibition of the peak Ba2+ current and significantly occlude inhibitory effects of oxo-M. In addition, the internal dialysis of guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS, 2 mM) also significantly reduced the muscarinic inhibition of the peak Ba2+ current by oxo-M. Inhibitory effects of oxo-M were significantly abolished by pertussis toxin (PTX, 200 and 400 ng/ml) but not by cholera toxin (400 ng/ml). Furthermore, the bath application of N-ethylmaleimide (50 microM) significantly reduced the inhibition of the peak Ba2+ current by oxo-M. The oxo-M shifted the activation curve derived from measurments of tail currents toward more positive potentials. A strong conditioning prepulse to +100 mV significantly relieved the muscarinic inhibition of peak Ba2+ currents by oxo-M and the GTPgammaS-induced current inhibition. In a series of experiments, changes in intracellular concentration of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid and protein kinase activities failed to mimic or occlude the current inhibition by oxo-M. The dihydropyridine antagonist nifedipine (10 microM) was not able to occlude any of the inhibitory effects of oxo-M, and oxo-M (3 microM) failed to reduce the slow tail currents induced by the L-type agonist methyl 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate (FPL 64176; 2 microM). However, omega-conotoxin (omega-CgTX) GVIA (1 microM) significantly occluded the muscarinic inhibition of the Ba2+ currents. In the presence of omega-CgTX GVIA (1 microM) and nifedipine (10 microM), oxo-M could further inhibit approximately 20% of the total Ca2+ current. After complete removal of N-, Q-, and L-type currents with use of omega-CgTX GVIA, omega-agatoxin IVA, and nifedipine, 70% of the R-type current (approximately 6-7% of the total current) was inhibited by oxo-M (3 microM). In conclusion, the M2 muscarinic receptor activation selectively inhibits N-, Q-, and R-type Ca2+ channel currents, sparing L-type Ca2+ channel currents mainly via a PTX- and voltage-sensitive pathway in adult rat intracardiac neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M4 muscarinic receptor activation modulates calcium channel currents in rat intracardiac neurons.

Modulation of high-voltage-activated Ca2+ channels by muscarinic receptor agonists was investigated in isolated parasympathetic neurons of neonatal rat intracardiac ganglia using the amphotericin B perforated-patch whole cell recording configuration of the patch-clamp technique. Focal application of the muscarinic agonists acetylcholine (ACh), muscarine, and oxotremorine-M to the voltage-clampe...

متن کامل

Calcineurin modulates G protein-mediated inhibition of N-type calcium channels in rat sympathetic neurons.

The modulation of N-type voltage-gated calcium (Ca2+) channels by G protein-coupled receptors was investigated in sympathetic neurons of the male rat major pelvic ganglion (MPG) with the use of whole cell patch-clamp recording techniques from acutely dissociated neurons. By inhibiting calcineurin, a Ca2+/calmodulin-regulated protein phosphatase, the alpha2 noradrenergic and somatostatin recepto...

متن کامل

Muscarinic Receptor Activation Modulates Ca Channels in Rat Intracardiac Neurons via a PTX- and Voltage-Sensitive Pathway

patch-clamp technique, effects of the potent muscarinic agonist oxotremorine methiodide ( oxo-M ) on voltage-activated Ca 2/ I N T R O D U C T I O N channel currents were investigated in acutely dissociated adult Acetylcholine (ACh) is the principal transmitter at both rat intracardiac neurons. In all tested neurons oxo-M reversibly preganglionic and postganglionic synapses in parasympainhibite...

متن کامل

Opioid receptor-mediated inhibition of omega-conotoxin GVIA-sensitive calcium channel currents in rat intracardiac neurons.

Modulation of depolarization-activated ionic conductances by opioid receptor agonists was investigated in isolated parasympathetic neurons from neonatal rat intracardiac ganglia by using the whole cell perforated patch clamp technique. Met-enkephalin (10 muM) altered the action potential waveform, reducing the maximum amplitude and slowing the rate of rise and repolarization but the afterhyperp...

متن کامل

Muscarine modulates Ca2+ channel currents in rat sensorimotor pyramidal cells via two distinct pathways.

We used the whole cell patch-clamp technique and single-cell reverse transcription-polymerase chain reaction (RT-PCR) to study the muscarinic receptor-mediated modulation of calcium channel currents in both acutely isolated and cultured pyramidal neurons from rat sensorimotor cortex. Single-cell RT-PCR profiling for muscarinic receptor mRNAs revealed the expression of m1, m2, m3, and m4 subtype...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 78 3  شماره 

صفحات  -

تاریخ انتشار 1997